• 网站地图|收藏本站|数学学习|学习方法|电脑学习|教学大全|生活常识|句子大全|管理资料下载|范文大全
  • 六年级奥数题目及答案:容斥原理问题(高等难度)

    时间:10-14 10:17:51来源:http://www.laixuea.com 小学六年级奥数题库阅读:8882

    概要: 容斥原理问题:(高等难度)在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )容斥原理问题答案:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+ a23)×2……②由(3)知:a12+a13+a123=a1-1&hel

    六年级奥数题目及答案:容斥原理问题(高等难度),标签:六年级奥数题库,http://www.laixuea.com

    容斥原理问题:(高等难度)

    在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是(       )

    容斥原理问题答案

    根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

    分别设各类的人数为a1、a2、a3、a12、a13、a23、a123

    由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①

    由(2)知:a2+a23=(a3+ a23)×2……②

    由(3)知:a12+a13+a123=a1-1……③

    由(4)知:a1=a2+a3……④

    再由②得a23=a2-a3×2……⑤

    再由③④得a12+a13+a123=a2+a3-1⑥

    然后将④⑤⑥代入①中,整理得到

    a2×4+a3=26

    由于a2、a3均表示人数,可以求出它们的整数解:

    当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22

    又根据a23=a2-a3×2……⑤可知:a2>a3

    因此,符合条件的只有a2=6,a3=2。

    然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。

    故只解出第二题的学生人数a2=6人。



    Tag:小学六年级奥数题库六年级奥数题库数学学习 - 小学奥数 - 小学六年级奥数题库