概要:第三,利用练习十九第3题,弄清百分数与分数的联系与区别。这道题里的分数都是分母为100的分数,其中有的是百分数,有的则不是。通过判断“哪几个分数可以用百分数来表示?哪些不能?”再一次凸现百分数的意义。当分数具有一个数与另一个数“倍比”(几倍或几分之几)的意义时,它与百分数在意义上是一致的,可以写成百分数的形式。当分数表示一个数量是多少的时候,它不具备百分数的属性,不能写成百分数。第四,利用第99页“练一练”,练习十九第8、9题,体会百分数与1的关系。在“练一练”第1题里,每个大正方形都表示“1”,其中的涂色部分和未涂色部分都是“1”的百分之几,同一图中的两部分合起来刚好是大正方形,与图对应的两个百分数之和是100%。可见,任何一个百分数都有相应的“1”,当百分号前面的数小于100时,这个百分数小于1;当百分数的分子是100的时候,这个百分数等
苏教版六年级数学——六年级(上册)“认识百分数”教学问答,标签:小学六年级教案范文,http://www.laixuea.com第三,利用练习十九第3题,弄清百分数与分数的联系与区别。这道题里的分数都是分母为100的分数,其中有的是百分数,有的则不是。通过判断“哪几个分数可以用百分数来表示?哪些不能?”再一次凸现百分数的意义。当分数具有一个数与另一个数“倍比”(几倍或几分之几)的意义时,它与百分数在意义上是一致的,可以写成百分数的形式。当分数表示一个数量是多少的时候,它不具备百分数的属性,不能写成百分数。
第四,利用第99页“练一练”,练习十九第8、9题,体会百分数与1的关系。在“练一练”第1题里,每个大正方形都表示“1”,其中的涂色部分和未涂色部分都是“1”的百分之几,同一图中的两部分合起来刚好是大正方形,与图对应的两个百分数之和是100%。可见,任何一个百分数都有相应的“1”,当百分号前面的数小于100时,这个百分数小于1;当百分数的分子是100的时候,这个百分数等于1。把这些认识应用到第8题,就能把整个下载任务看成“1”,通过100% - 65%算出还有35%没有完成。第9题扩展对百分数的认识,至诚超市和大达超市的营业额分别比佳美超市多20%和少15%,这两个百分数都把佳美超市的营业额看作“1”,表示至诚超市营业额的百分数120%(1 + 20%)大于1,表示大达超市营业额的百分数85%(1 - 15%)小于1。
第五,百分数只表示一个数是另一个数的百分之几,不表示两个数量各是多少。第101页第10题,如果100人表演团体操,其中男生有40人;如果200人表演团体操,其中男生有80人。男生的具体人数都是根据“男生人数占40%”的含义推算出来的。可见,这个百分数只表示参加团体操表演的男生人数与总人数的关系,只表示男生人数在总人数里所占的份额。这个关系与份额是确定的,至于男生究竟有多少人,还与参加表演的总人数有关。由此可知,第11题两个学校的女生人数不一定相同,尽管两校的女生人数都占学生总数的49%。
问:关于百分数与小数或分数的相互改写,教材在编写上有哪些特点?
答:例2与例3分别教学百分数与小数、百分数与分数的互化。我们知道,分数化成百分数的时候,一般先把分数化成小数,再把小数化成百分数。可见,小数化成百分数是分数化成百分数过程中的一步,这是例2与例3的内在联系,也是教材依次编排这两道例题的主要原因。教材引导学生应用小数与百分数的意义,以及分数与除法的关系,经历改写过程,理解方法,发现规律,形成技能。教材编写注意了以下几点:
1. 创设需要改写的问题情境。例2比较王红和李芳完成仰卧起坐的情况,实质上是比较1.15 与110%两个数的大小。其中一个是小数,另一个是百分数,需要化成相同形式的数才能看出谁大谁小。例3把调查获得的3/5与2/7分别用百分数表示,直接提出了分数化成百分数的要求。这两道例题都结合具体的问题情境,提出改写数的学习任务,让学生感受改写数的表示形式是有意义的活动,是解决实际问题的有效方法。
2. 鼓励学生探索方法。小数与百分数的互化主要应用小数的意义和百分数的意义,分数化成百分数主要应用分数与除法的关系。改写数需要的知识学生已经掌握,因此,两道例题都应让学生独立思考,充分参与改写数的活动。
例2同时出现小数化成百分数和百分数化成小数,这是考虑了学生独立解决问题会有不同的思路,选择不同的方法,教学应该尊重他们的想法和做法。在交流时,学生既能介绍自己的思考,也能吸收他人的方法,集思广益,资源共享,从而获得完整的知识。
例3只把分数化成百分数,“试一试”才把百分数化成分数。把百分数与分数的互化分别教学有两点原因:一是由于两种改写的方法不同,涉及的已有知识不同,分开编排便于教学。二是由于分数化成百分数,分数的分子除以分母有除尽和除不尽两种可能,在除不尽的时候要交代一般的处理方法——保留三位小数(即在百分号前面保留一位小数)。